204 — Analysis of Variance g04dbc

NAG C Library Function Document

nag_anova_confid interval (g04dbc)

1 Purpose

nag_anova_confid interval (g04dbc) computes simultaneous confidence intervals for the differences
between means. It is intended for use after nag_anova random (g04bbc) or nag_anova row_col (g04bcc).

2 Specification

#include <nag.h>
#include <nagg04.h>

void nag_anova_confid_interval (Nag_IntervalType type, Integer nt,
const double tmean[], double rdf, const double c[], Integer tdc,
double clevel, double cil[], double ciul], Integer isigl[],
NagError *fail)

3 Description

In the computation of analysis of a designed experiment the first stage is to compute the basic analysis of
variance table, the estimate of the error variance (the residual or error mean square), 42, the residual
degress of freedom, v, and the (variance ratio) F'-statistic for the ¢ treatments. The second stage of the
analysis is to compare the treatment means. If the treatments have no structure, for example the treatments
are different varieties, rather than being structured, for example a set of different temperatures, then a
multiple comparison procedure can be used.

A multiple comparison procedure looks at all possible pairs of means and either computes confidence
intervals for the difference in means or performs a suitable test on the difference. If there are ¢ treatments
then there are ¢(¢ — 1)/2 comparisons to be considered. In tests the type 1 error or significance level is the
probability that the result is considered to be significant when there is no difference in the means. If the
usual ¢-test is used with, say, a five percent significance level then the type 1 error for all k = (¢t — 1)/2
tests will be much higher. If the tests were independent then if each test is carried out at the 100a percent
level then the overall type 1 error would be a* =1— (1 — a)k ~ ka. In order to provide an overall
protection the individual tests, or confidence intervals, would have to be carried out at a value of « such
that o* is the required significance level, e.g., five percent.

The 100(1 — «) percent confidence interval for the difference in two treatment means, 7; and 7; is given by

(7i = 75) £ Ty g 5€(Ti — 75),

where se() denotes the standard error of the difference in means and T(*w y is an appropriate percentage
point from a distribution. There are several possible choices for T(, , e These are:

(a) %q(l_aﬁy’t), the studentised range statistic. It is the appropriate statistic to compare the largest mean
with the smallest mean. This is known as Tukey—Kramer method.

(®) t(a/ku), this is the Bonferroni method.

1/k

(©) t(apw)> Where ag =1 — (1 —)", this is known as the Dunn—Sidak method.

(d) t(a,), this is known as Fisher’s LSD (least significant difference) method. It should only be used if the
overall F-test is significant, the number of treatment comparisons is small and were planned before
the analysis.

(e) \/ (k—1)Fi_q -1, where F1_ 1, is the deviate corresponding to a lower tail probability of 1 — o
from an F-distribution with k — 1 and v degrees of freedom. This is Scheffe’s method.

In cases (b), (c) and (d), #(,,,) denotes the o two-tail significance level for the Student’s ¢-distribution with
v degrees of freedom, see nag_deviates students t (g01fbc).

[NP3491/6] g04dbc.1

g04dbc NAG C Library Manual

The Scheffe method is the most conservative, followed closely by the Dunn—Sidak and Tukey—Kramer
methods.

To compute a test for the difference between two means the statistic,

T — T
se(7; — 7))
is compared with the appropriate value of T(*(Y vi)-
4 Parameters
I: type — Nag_IntervalType Input

On entry: indicates which method is to be used.
If type = Nag Tukeylnterval, the Tukey—Kramer method is used.
If type = Nag_Bonferronilnterval, the Bonferroni method is used.
If type = Nag Dunnlnterval, the Dunn—Sidak method is used.
If type = Nag_FisherInterval, the Fisher LSD method is used.
If type = Nag_Scheffelnterval, the Scheffe’s method is used.
Constraint: type = Nag_TukeylInterval, Nag Bonferronilnterval, Nag DunnInterval,
Nag_FisherInterval or Nag_ScheffeInterval.
2: nt — Integer Input
On entry: the number of treatment means, ¢.

Constraint: nt > 2.

3: tmean|nt] — const double Input
On entry: tmean[i — 1] contains the treatment means, 7;, ¢ = 1,2,...,t.
4: rdf — double Input

On entry: the residual degrees of freedom, v.

Constraint: rdf > 1.0.

5: c¢[nt][tdc] — const double Input

On entry: the strictly lower triangular part of ¢ must contain the standard errors of the differences
between the means as returned by nag_anova random (g04bbc) and nag anova row_col (g04bcc).
That is
c[i — 1][7 — 1], ¢« > j, contains the standard error of the difference between the ¢th and jth mean in
tmean.

Constraint: ¢[i — 1][j— 1] > 0.0, : =2,3,...,t; j=1,2,...,0 — 1.

6: tdc — Integer Input

On entry: the second dimension of the array ¢ as declared in the function from which
nag anova_confid interval is called.

Constraint: tde > nt.

7: clevel — double Input
On entry: the required confidence level for the computed intervals, (1 — «).

Constraint: 0.0 < clevel < 1.0.

g04dbc.2 [NP3491/6]

204 — Analysis of Variance g04dbc

5

cil[nt*(nt-1)/2] — double Output
On exit: cil[(: — 1)(i —2)/2 + j — 1] contains the lower limit to the confidence interval for the
difference between ¢th and jth means in tmean, ¢ =2,3,...,¢; j=1,2,...,¢1— 1.

ciu[nt*(nt-1)/2] — double Output
On exit: ciu[(i — 1)(—2)/2 4+ j — 1] contains the upper limit to the confidence interval for the
difference between ith and jth means in tmean, ¢ =2,3,...,¢; j=1,2,...,i— 1.

isig[nt*(nt-1)/2] — Integer Output

On exit: isig[(i — 1)(i — 2)/2 4+ j — 1] indicates if the difference between ith and jth means in
tmean is significant, ¢ =2,3,...,¢; j=1,2,...,¢— 1. If the difference is significant then the
returned value is 1; otherwise the returned value is 0.

fail — NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT_ARG_LT

On entry, nt must not be less than 2: nt = <value>.

NE_2_INT_ARG_LT

On entry, tde = <value> while nt = <value>.
These parameters must satisfy tdc > nt.

NE_REAL_ARG_LT

On entry, rdf must not be less than 1.0: rdf = <value>.

NE_REAL

On entry, clevel = <value>.

Constraint: 0.0 < clevel < 1.0.

NE_BAD_PARAM

On entry, parameter type had an illegal value.

NE_2D_REAL_ARRAY_CONS

On entry, c[<value>][<value>] = <value>.

Constraint: ¢[¢][j] > 0.0, ¢ =1,2,... nt—1; 7=0,1,...,2 — 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

NE_STUDENTIZED_STAT

There has been a failure in the computation of the studentized range statisic. Try using a smaller
value of clevel.

[NP3491/6] 204dbc.3

g04dbc NAG C Library Manual

6 Further Comments

An alternative approach to one used in this routine is the sequential testing of the Student-Newman—Keuls
procedure. This, in effect, uses the Tukey—Kramer method but first ordering the treatment means and
examining only subsets of the treatment means in which the largest and smallest are significantly different.
At each stage the third parameter of the Studentised range statistic is the number of means in the subset
rather than the total number of means.

6.1 Accuracy

For the accuracy of the percentage point statistics see nag_deviates_students_t (g01fbc).

6.2 References

Kotz S and Johnson N L (ed.) (1985) Multiple range and associated test procedures Encyclopedia of
Statistical Sciences 5 Wiley, New York

Kotz S and Johnson N L (ed.) (1985) Multiple comparison Encyclopedia of Statistical Sciences 5 Wiley,
New York

Winer B J (1970) Statistical Principles in Experimental Design McGraw-Hill

7 See Also

nag_deviates_students_t (g01fbc)
nag_anova_random (g04bbc)
nag_anova_row_col (g04bcc)

8 Example

In the example taken from Winer (1970) a completely randomised design with unequal treatment
replication is analysed using nag_anova random (g04bbc) and then confidence intervals are computed by
nag anova_confid interval using the Tukey—Kramer method.

8.1 Program Text

/* nag_anova_confid_interval (g0O4dbc) Example Program.
*

* Copyright 2000 Numerical Algorithms Group.

* Mark 6, 2000.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagg04.h>

int main (void)

{
#define TABLE(I,J) tablel[((I)-1)*5 + (J)-1]

const char *fmt_99998[] = {"%s", " %$3.0f ", "s10.1f ", "%10.1f ", "%10.3f
", "%9.4f"};

char star[1 * 2+1], typel2];

double *bmean=0, *c=0, *cil=0, *ciu=0, clevel, *ef=0, gmean, *r=0, rdf;

double *table=0, *tmean=0, tol, *y=0;

Integer i, ij, irdf, *irep=0, *isig=0, *it=0, j, n, nblock, nt;

Integer exit_status=0;

g04dbc.4 [NP3491/6]

204 — Analysis of Variance g04dbc

Nag_IntervalType type_enum;
NagError fail;

INIT _FAIL(fail);
Vprintf ("g04dbc Example Program Results\n");

/* Skip heading in data file */
Vscanf ("s*["\n]");

Vscanf ("%1d %14 ", &n, &nt);
if (!(y = NAG_ALLOC(n, double))
|| !(it = NAG_ALLOC(n, Integer))
|| !(tmean = NAG_ALLOC(nt, double))
|| !(table = NAG_ALLOC(4*5, double))
[l Y(c = NAG_ALLOC(nt*nt, double))
[! (ir = NAG_ALLOC(nt, Integer))
] !'(xr = NAG_ALLOC(n, double))
|| !(ef = NAG_ALLOC(nt, double))
|| !(isig = NAG_ALLOC(nt*(nt-1)/2, Integer))
|| !'(cil = NAG_ALLOC(nt*(nt-1)/2, double))
|| !'(ciu = NAG_ALLOC (nt*(nt-1)/2, double)))

{
Vprintf ("Allocation failure\n");
exit_status = 1;
goto END;
}
for (i = 1; 1 <= n; ++1)

Vscanf ("s1lf ", syli - 11);
for (i = 1; i <= n; ++1)
Vscanf ("sld ", sitl[i - 11);
tol = 5e-6;
irdf = 0;
nblock = 1;
if (! (bmean = NAG_ALLOC(nblock, double)))

{
exit_status = -1;
Vprintf ("Allocation failure\n")
goto END;

}

gO04bbc(n, y, Nag_NoBlocks, nblock, nt, it, &gmean, bmean, tmean, table,
c, nt, irep, r, ef, tol, irdf, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from gO04bbc.\n%s\n", fail.message);
exit_status = -1;
goto END;

Vprintf ("\n%s\n\n", "ANOVA table");
Vprintf ("%s\n\n",
" Source df SS MS F Prob");
Vprintf (" Treatments");
for (3 = 1; j <= 5; ++3j)
Vprintf (fmt_99998[j], TABLE(2,]));
Vprintf ("\n")
Vprintf (" Residual ");
for (3 = 1; j <= 3; ++3)

[NP3491/6] g04dbc.5

g04dbc NAG C Library Manual

Vprintf (fmt_99998[j], TABLE(3,3));
Vprintf ("\n") ;
Vprintf (" Total ")

for (3 1; j <= 2; ++3)
Vprintf (fmt_99998([j], TABLE(4,3));
Vprintf ("\n") ;
Vprintf ("\n Treatment means\n");
Vprintf ("\n") ;
for (j = 1; j <= nt; ++3)
Vprintf ("%8.3f%s", tmean[j - 11,73%82"":"\n");

Vprintf ("\n");

Vprintf ("\n Simultaneous Confidence Intervals\n\n");
rdf = TABLE(3,1);

Vscanf (" ’'%c’ %1f", type, &clevel);

if (*type == 'T')
type_enum = Nag_TukeyInterval;
else if (*type == 'B’)
type_enum = Nag_BonferroniInterval;
else if (*type == 'D’)
type_enum = Nag_DunnInterval;
else if (*type == 'L’)

type_enum = Nag_FisherInterval;
else if (*type == ’S’)
type_enum = Nag_Scheffelnterval;
else
type_enum = (Nag_IntervalType)-999;
g04dbc (type_enum, nt, tmean, rdf, c, nt, clevel, cil, ciu, isig,
&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from g04dbc.\n%s\n", fail.message);
exit_status=1;

goto END;
}
star[1] Ixl
star[0] = " ';
star[2] = "\O0’;
ij = 0;
for (1 = 1; 1 <= nt; ++1)
{
for (j = 1; jJ <=1 - 1; ++3)
{
++i7;

Vprintf (" %21d%21d %10.3f %10.3f %c\n",
i, j, cillij - 11, ciulij - 1], starlisiglij - 111);

b
}
END:
if (y) NAG_FREE(y);
if (it) NAG_FREE (it);
if (tmean) NAG_FREE (tmean) ;

(
(
(
if (table) NAG_FREE(table);
if (c) NAG_FREE(c);
(
(
(
(

if (irep) NAG_FREE (irep);
if (r) NAG_FREE(r);

if (ef) NAG_FREE (ef);

if (isig) NAG_FREE(isigq);

204dbc.6 [NP3491/6]

204 — Analysis of Variance

if (cil) NAG_FREE(cil);

if (ciu) NAG_FREE(ciu);

if (bmean) NAG_FREE (bmean) ;
return exit_status;

8.2 Program Data

gO04dbc Example Program Data

26 4

32 4 3 1 5

7 8 4 10 6

32 1 2 4 2 3 1
10 12 8 5 12 10 9
111111
22222
33333333
4 4 44444

"T" .95

8.3 Program Results

gO04dbc Example Program Results

ANOVA table

Source daf SS MS F
Treatments 3 239.9 80.0 24.029
Residual 22 73.2 3.3
Total 25 313.1

Treatment means

3.000 7.000 2.250 9.429

Simultaneous Confidence Intervals

21 0.933 7.067 *
31 -3.486 1.986
32 -7.638 -1.862 *
4 1 3.610 9.247 *
4 2 -0.538 5.395
4 3 4.557 9.800 *

Prob

0.0000

g04dbc

[NP3491/6]

g04dbc.7 (last)

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

